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TL;DR

» The TVO is a new objective for training both continuous and discrete
deep generative models that is as broadly applicable as the ELBO.

The Thermodynamic Variational Objective (TVO)

D i sc rete Model: sigmoid belief network C 0 nti n u o u s

Dataset: MNIST
Model learning

Model: Variational autoencoder
Dataset: MNIST

Baselines: Variational Autoencoder [7,8],
Importance-weighted Auto Encoder [4]

We also investigated the
effect of f3,.x locations

Baselines: VIMCO [9], reweighted wake sleep (RWS) [4]

The TVO is a K-term Riemann integral approximation

TVO (red) achieves
SOTA in terms of

The TVO outperforms

» The TVO achieves state-of-the-art model and inference network learning

without using the reparameterization trick.

to log py(Xx). The ELBO is a 7-term Riemann integral

convergence rate and
final test log evidence
for S=5, 10. At S=150
VIMCO achieves a
higher test log evidence
but converges more

the VAE and performs
competitively with IWAE
at 50 samples, despite
not using the
reparameterization trick.

IWAE is the top

We have empirically
observed the integrand
has a point of maximum
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approximation to 1og p,(X).

performing objective in
all cases.
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» The TVO is a generalization of the objectives used in variational
inference [5], variational autoencoders [7,8], wake sleep [3], and
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Tl refresher

> Tl is a technique from physics to calculate
the log ratio of two unknown normalizing
constants [1, 2].
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Consider the model and inference network

ELBO objectives

Variational Inference [5]
» Variational AutoEncoders [7,8]

>  The left and right endpoints of the TVI correspond
to the ELBO and EUBO, respectively "

7(z) := py(X, Z)

> Consider two densities with intractable 7ip(z) = qy(z|x)

normalizing constants

TVO(0, ¢, X) The Thermodynamic Variational Identity (TVI)

: _ _ _ _ » Wake in WS [3]
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. E iric path bet 7 (2) and 72 px. 2% » To use the TVO as an objective function, we need to be able to compute ] _ _ _ > Inference Compilation [6]
oIt 2 GERIMETIE DA DF WES ) &1 ) = = expectations and gradients »  Using a right Riemann sum results in an upper - Sleepin WS B
7y(Z) using scalar parameter /3 Zy Zy 9 9 PP > Sleep-¢h in RWS [4]
- e | __ > under 7y(z) can be computed simply N bound to log p,(x) that can be minimized
2B 5(2)fry(2)' With this path, the first derivative of the e i _ _
7y(2) = z, g potential is the "instantaneous ELBO"! by exponentiating importance weights by / i 1 [ oz
0 1% (X Z) B g §§ gloa- = e TVOU(Q, ¢a X) = EUBO(@, ¢9 X) + Z [Eﬂﬁk log A Z logpé’(x)
» Then compute log(Z,/Z,) using the central Tl — log #4(z) = log A Bx.z)  px.2)quz %' [ pxz)\ il Sl i &l sl K =1 I q4(Z|X) )
identity: op ng(z | %) 42| X) qyp(Z, | X) C\ gzl ) i e i _ __ ] , _
1 Plugging in to @, we arrive at the Partitions are cheap (because >  Methods that optimize the ELBO or EUBO are 1-term left / right Riemann
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thermodynamic variational identity (TVI)

log(2,) ~ log(Zy) = |
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Unnormalized, easy to compute ]

function based covariance gradient estimator
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using numerical methods
e Is the EUBO at Integrand strictly
p=0 p=1 increasing

[7] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In International
Conference on Learning Representations, 2014.

[8] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International Conference on Machine Learning,

[4] Jorg Bornschein and Yoshua Bengio. Reweighted wake-sleep. In International Conference on Learning
Representations, 2015.

[5] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859-877, 2017

[6] Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference compilation and universal probabilistic
programming. arXiv preprint arXiv:1610.09900, 2016.

[9] Andriy Mnih and Danilo Rezende. Variational inference for Monte Carlo objectives. In
International Conference on Machine Learning, pages 2188-2196, 2016.

[10] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. In
International Conference on Learning Representations, 2016.

» log ﬁﬂ(z) is referred to as the "potential” in
[Equivalent to "average" baseline commonly used w/ reinforce] [ Replacement for Vylog Z, using similar derivation as ]

physics




