The Randomized Newton Method for Convex
 Optimization

Vaden Masrani
UBC MLRG

April 3rd, 2018

Introduction

We have some unconstrained, twice-differentiable convex function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ that we want to minimize:

$$
x^{*}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f(x)
$$

e.g. quadratic loss, logistic loss, log-sum-exp, etc

Introduction

How might you do it? For example, consider minimizing I2-regularized least squares with data matrix $A \in \mathbb{R}^{n \times d}$

- Exact:
- Iteration cost: $O\left(n d^{2}+d^{3}\right)$

Introduction

How might you do it? For example, consider minimizing I2-regularized least squares with data matrix $A \in \mathbb{R}^{n \times d}$

- Exact:
- Iteration cost: $O\left(n d^{2}+d^{3}\right)$
- Gradient descent
- Iteration cost: $O(n d)$, convergence rate: $O(\log (1 / \epsilon))$:

Introduction

How might you do it? For example, consider minimizing I2-regularized least squares with data matrix $A \in \mathbb{R}^{n \times d}$

- Exact:
- Iteration cost: $O\left(n d^{2}+d^{3}\right)$
- Gradient descent
- Iteration cost: $O(n d)$, convergence rate: $O(\log (1 / \epsilon))$:
- Stochastic gradient descent
- Iteration cost: $O(d)$, convergence rate: $O(1 / \epsilon)$:

Introduction

How might you do it? For example, consider minimizing |2-regularized least squares with data matrix $A \in \mathbb{R}^{n \times d}$

- Exact:
- Iteration cost: $O\left(n d^{2}+d^{3}\right)$
- Gradient descent
- Iteration cost: $O(n d)$, convergence rate: $O(\log (1 / \epsilon))$:
- Stochastic gradient descent
- Iteration cost: $O(d)$, convergence rate: $O(1 / \epsilon)$:
- Newton's method
- Iteration cost: $O\left(n d^{2}+d^{3}\right)$, convergence rate:
$O(\log (\log (1 / \epsilon))):$

Introduction

How might you do it? For example, consider minimizing |2-regularized least squares with data matrix $A \in \mathbb{R}^{n \times d}$

- Exact:
- Iteration cost: $O\left(n d^{2}+d^{3}\right)$
- Gradient descent
- Iteration cost: $O(n d)$, convergence rate: $O(\log (1 / \epsilon))$:
- Stochastic gradient descent
- Iteration cost: $O(d)$, convergence rate: $O(1 / \epsilon)$:
- Newton's method
- Iteration cost: $O\left(n d^{2}+d^{3}\right)$, convergence rate:

$$
O(\log (\log (1 / \epsilon))):
$$

- Randomized newton's method
- Iteration cost: $O\left(n d \log (m)+m d^{2}\right)$, convergence rate:
$O(\log (1 / \epsilon))$
- with $m \ll n$

Introduction

How might you do it? For example, consider minimizing |2-regularized least squares with data matrix $A \in \mathbb{R}^{n \times d}$

- Exact:
- Iteration cost: $O\left(n d^{2}+d^{3}\right)$
- Gradient descent
- Iteration cost: $O(n d)$, convergence rate: $O(\log (1 / \epsilon))$:
- Stochastic gradient descent
- Iteration cost: $O(d)$, convergence rate: $O(1 / \epsilon)$:
- Newton's method
- Iteration cost: $O\left(n d^{2}+d^{3}\right)$, convergence rate: $O(\log (\log (1 / \epsilon)))$:
- Randomized newton's method
- Iteration cost: $O\left(n d \log (m)+m d^{2}\right)$, convergence rate:
$O(\log (1 / \epsilon))$
- with $m \ll n$
- Many, many other ways...

Newton's method

- We start with a derivation of the standard newton method.
- Assume we're at some iteration x^{t}
- We find x^{x+1} by minimizing the second-order taylor expansion $f(x) \approx g(x)$ around x^{t} :

$$
x^{t+1}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} g(x)
$$

- Where:
- $g(x)=f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left(x-x^{t}\right)^{T} H\left(x^{t}\right)\left(x-x^{t}\right)$
- $H\left(x^{t}\right)=\nabla^{2} f\left(x^{t}\right)$

Newton's method

- What happens if we ignore curvature information and set $H(x)=\frac{1}{\alpha_{t}} I$?

Newton's method

- What happens if we ignore curvature information and set $H(x)=\frac{1}{\alpha_{t}} I$?
- $g(x)=f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha_{t}}\left\|\left(x-x^{t}\right)\right\|_{2}^{2}$

Newton's method

- What happens if we ignore curvature information and set $H(x)=\frac{1}{\alpha_{t}} I$?
- $g(x)=f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha_{t}}\left\|\left(x-x^{t}\right)\right\|_{2}^{2}$
- Take derivative w.r.t x, set to zero:

Newton's method

- What happens if we ignore curvature information and set $H(x)=\frac{1}{\alpha_{t}} I$?
- $g(x)=f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha_{t}}\left\|\left(x-x^{t}\right)\right\|_{2}^{2}$
- Take derivative w.r.t x, set to zero:

$$
\begin{aligned}
\frac{\partial g(x)}{\partial x}=0 & =\nabla f\left(x^{t}\right)+\frac{1}{\alpha_{t}}\left(x-x^{t}\right) \\
-\frac{1}{\alpha_{t}}\left(x-x^{t}\right) & =\nabla f\left(x^{t}\right) \\
x^{t+1} & =x^{t}-\alpha_{t} \nabla f\left(x^{t}\right)
\end{aligned}
$$

Newton's method

- What happens if we ignore curvature information and set $H(x)=\frac{1}{\alpha_{t}} I$?
- $g(x)=f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2 \alpha_{t}}\left\|\left(x-x^{t}\right)\right\|_{2}^{2}$
- Take derivative w.r.t x, set to zero:

$$
\begin{aligned}
\frac{\partial g(x)}{\partial x}=0 & =\nabla f\left(x^{t}\right)+\frac{1}{\alpha_{t}}\left(x-x^{t}\right) \\
-\frac{1}{\alpha_{t}}\left(x-x^{t}\right) & =\nabla f\left(x^{t}\right) \\
x^{t+1} & =x^{t}-\alpha_{t} \nabla f\left(x^{t}\right)
\end{aligned}
$$

- We recover gradient descent

Newton's method

- ... and if we use curvature information?

Newton's method

- ... and if we use curvature information?
- $g(x)=f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left(x-x^{t}\right)^{T} H\left(x^{t}\right)\left(x-x^{t}\right)$

Newton's method

- ... and if we use curvature information?
- $g(x)=f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left(x-x^{t}\right)^{T} H\left(x^{t}\right)\left(x-x^{t}\right)$
- Again take derivative w.r.t x, set to zero:

Newton's method

- ... and if we use curvature information?
- $g(x)=f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left(x-x^{t}\right)^{T} H\left(x^{t}\right)\left(x-x^{t}\right)$
- Again take derivative w.r.t x, set to zero:

$$
\begin{aligned}
\frac{\partial g(x)}{\partial x}=0 & =\nabla f\left(x^{t}\right)+H\left(x^{t}\right)\left(x-x^{t}\right) \\
-H\left(x^{t}\right)\left(x-x^{t}\right) & =\nabla f\left(x^{t}\right) \\
x^{t+1} & =x^{t}-\left[H\left(x^{t}\right)\right]^{-1} \nabla f\left(x^{t}\right)
\end{aligned}
$$

Newton's method

- ... and if we use curvature information?
- $g(x)=f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left(x-x^{t}\right)^{T} H\left(x^{t}\right)\left(x-x^{t}\right)$
- Again take derivative w.r.t x, set to zero:

$$
\begin{aligned}
\frac{\partial g(x)}{\partial x}=0 & =\nabla f\left(x^{t}\right)+H\left(x^{t}\right)\left(x-x^{t}\right) \\
-H\left(x^{t}\right)\left(x-x^{t}\right) & =\nabla f\left(x^{t}\right) \\
x^{t+1} & =x^{t}-\left[H\left(x^{t}\right)\right]^{-1} \nabla f\left(x^{t}\right)
\end{aligned}
$$

- We get newton's method

Randomized newton's method

- Newton's method converges in superlinear time
- But Newton's method requires inverting the hessian, which is prohibitively expensive for large datasets
- Have to solve linear system $H x=\nabla f\left(x^{t}\right)$ at each iteration
- How does SGD reduce the cost per iteration?
- Replace gradient with random vector d_{t} s.t. $E\left[d_{t}\right]=\nabla f\left(x^{t}\right)$:

$$
x^{t+1}=x^{t}-\alpha_{t} d_{t}
$$

- How does randomized newton reduce the cost per iteration?
- Replace hessian with random matrix D_{t} s.t. $E\left[d_{t}\right]=H\left(x^{t}\right)$

$$
x^{t+1}=x^{t}-D_{t}^{-1} \nabla f\left(x^{t}\right)
$$

- Parallelization is trivial modification

Digression: Matrix Sketches

- In order to formalize the randomized newton method, we need to establish the concept of "matrix sketches".
- One can sample the rows of a matrix $A \in \mathbb{R}^{n \times d}$ by forming a random "sketch" matrix $S \in \mathbb{R}^{m \times n}$
- Many variations are available
- This work uses S s.t. $E[S]=0$ and $E\left[S^{\top} S\right]=I_{n}$
- Using some tricks, $S A$ can be formed in $O(n d \log m)^{1}$

Sketch example: Random row sampling

- Given a probability distribution $\left\{p_{j}\right\}_{j=1}^{n}$ over rows $\mathrm{n}=\{1,2, \ldots, \mathrm{n}\}$, form S by sampling m rows with replacements, where each row $\mathrm{i}=\{1,2, \ldots, \mathrm{~m}\}$ takes on the value:

$$
s_{i}^{T}=\frac{e_{j}}{\sqrt{p_{j}}}
$$

- Sample (scaled) rows of A by matrix product $S A$

Sketch example: Random row sampling

$$
\begin{aligned}
S & =\left[\begin{array}{cccc}
0 & 0 & \frac{1}{\sqrt{p_{3}}} & 0 \\
0 & 0 & \frac{1}{\sqrt{p_{3}}} & 0 \\
\frac{1}{\sqrt{p_{1}}} & 0 & 0 & 0
\end{array}\right] \quad A=\left[\begin{array}{l}
-a_{1}^{T}- \\
-a_{2}^{T}- \\
-a_{3}^{T}- \\
-a_{4}^{T}-
\end{array}\right] \\
S A & =\left[\begin{array}{l}
\frac{1}{\sqrt{p_{3}}} * a_{3}^{T} \\
\frac{1}{\sqrt{p_{3}}} * a_{3}^{T} \\
\frac{1}{\sqrt{p_{1}}} * a_{1}^{T}
\end{array}\right]
\end{aligned}
$$

Back to randomized newton

- We will use a sketch matrix S to form a random vector d_{t} s.t $E\left[d_{t}\right]=H\left(x^{t}\right)$
- Many ways to do this, we will use the Newton sketch algorithm of Pilanci and Wainwright ${ }^{2}$.
- We are in the regime where $n>d$
- I'll focus on the unconstrained case, but their work extends to constrained minimization as well.

[^0]
Randomized newton

Recall our setup:

$$
x^{t+1}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left(x-x^{t}\right)^{T} H\left(x^{t}\right)\left(x-x^{t}\right)
$$

Randomized newton

Recall our setup:

$$
x^{t+1}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left(x-x^{t}\right)^{T} H\left(x^{t}\right)\left(x-x^{t}\right)
$$

Now supposed we have some hessian square root matrix $L \in \mathbb{R}^{n \times d}$ ie. $L^{T} L=H(x)$

- Ex: Consider $f(x)=g(A x)$, where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ has the separable form $g(A x)=\sum_{i}^{n} g_{i}\left(a_{i}^{T} x\right)$. In this case, $L=\operatorname{diag}\left\{g_{i}^{\prime \prime}\left(a_{i}^{T} x\right)\right\}_{i=1}^{n} A$
- Pilanci and Wainwright give examples of L for linear program, GLMs, linear/logistic regression

Randomized newton

Then standard newton becomes:

$$
\begin{aligned}
& x^{t+1}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left(x-x^{t}\right)^{T} H\left(x^{t}\right)\left(x-x^{t}\right) \\
& x^{t+1}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left\|L\left(x-x^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

Randomized newton

Then standard newton becomes:

$$
\begin{aligned}
& x^{t+1}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left(x-x^{t}\right)^{T} H\left(x^{t}\right)\left(x-x^{t}\right) \\
& x^{t+1}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left\|L\left(x-x^{t}\right)\right\|_{2}^{2}
\end{aligned}
$$

To randomized:

$$
x^{t+1}=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}} f\left(x^{t}\right)+\nabla f\left(x^{t}\right)^{T}\left(x-x^{t}\right)+\frac{1}{2}\left\|S_{t} L\left(x-x^{t}\right)\right\|_{2}^{2}
$$

Where $S_{t} \in \mathbb{R}^{m \times n}$ is an independent realization of a sketching matrix at iteration t.

Randomized newton

Solving for x :

$$
\begin{aligned}
x^{t+1} & =x^{t}-D_{t}^{-1} \nabla f\left(x^{t}\right) \\
D_{t} & =L^{T} S_{t}^{T} S_{t} L
\end{aligned}
$$

We see:

$$
E\left[D_{t}\right]=E\left[L^{T} S_{t}^{T} S_{t} L\right]=L^{T} E\left[S_{t}^{T} S_{t}\right] L=L^{T} L=H(x)
$$

Each step of the newton sketch algorithm can be computed in $O\left(m d^{2}\right)$ using conjugate gradient instead of $O\left(n d^{2}\right)$ of standard newton.

Convergence

If m is chosen to satisfy certain conditions ${ }^{3}$, the unconstrained newton sketch algorithm achieves linear convergence:

$$
f\left(x^{t}\right)-f\left(x^{*}\right) \leq \frac{\beta \gamma}{8 L}\left(\frac{1}{2}+\epsilon \frac{\beta}{\gamma}\right)^{t}
$$

Where $\beta=\lambda_{\text {min }}\left(H\left(x^{*}\right)\right), \gamma=\lambda_{\max }\left(H\left(x^{*}\right)\right)$ and we assume the hessian is Lipschitz continuous, i.e. $\|H(x)-H(y)\| \leq L\|x-y\|_{2}$.
${ }^{3}$ See eq'n 12 in Pilanci and Wainwright.

Parallel

Extending the newton sketch algorithm to the parallel setting is trivial. See for example "Parallel Stochastic Newton Method" ${ }^{4}$ for convergence results:

```
Algorithm 1 PSN: Parallel Stochastic Newton Method
Parameters: sampling \(\hat{S}\); data matrix \(\mathbf{M}\); aggregation parameter \(b\)
Initialization: Pick \(x^{0} \in \mathbb{R}^{n}\)
    1: for \(k=0,1,2, \ldots\) do
    2: for \(i=1, \ldots, c\) in parallel do
    3: \(\quad\) Independently generate a random set \(\hat{S}_{i}^{k} \sim \hat{S}\)
    4: \(\quad h_{i}^{k} \leftarrow\left(\mathbf{M}_{\hat{S}_{i}^{k}}\right)^{-1} \nabla f\left(x^{k}\right)\)
    5: end for
    6: \(\quad x^{k+1} \leftarrow x^{k}-\frac{1}{b} \sum_{i=1}^{c} h_{i}^{k}\)
    end for
```

[^1]
Sequential results ${ }^{5}$

Logistic regression, $d=100, n=16384, m=6 d$
${ }^{5}$ Pilanci and Wainwright, "Newton sketch: A linear-time optimization algorithm with linear-quadratic convergence".

Parallel results ${ }^{6}$

Linear regression, synthetic data, $d=n=10^{3}, m=3, c=$ number of processors

[^2]國 Mutnỳ, Mojmír and Peter Richtárik. "Parallel Stochastic Newton Method". In: arXiv preprint arXiv:1705.02005 (2017). Pilanci, Mert and Martin J Wainwright. "Newton sketch: A linear-time optimization algorithm with linear-quadratic convergence". In: arXiv preprint arXiv:1505.02250 (2015).

[^0]: ${ }^{2}$ Mert Pilanci and Martin J Wainwright. "Newton sketch: A linear-time optimization algorithm with linear-quadratic convergence". In: arXiv preprint arXiv:1505. 02250 (2015).

[^1]: ${ }^{4}$ Mojmír Mutnỳ and Peter Richtárik. "Parallel Stochastic Newton Method". In: arXiv preprint arXiv:1705.02005 (2017).

[^2]: ${ }^{6}$ Mutnỳ and Richtárik, "Parallel Stochastic Newton Method".

