The Randomized Newton Method for Convex
Optimization

Vaden Masrani

UBC MLRG

April 3rd, 2018

Introduction

We have some unconstrained, twice-differentiable convex function
f:RY — R that we want to minimize:

x* = argmin f(x)
x€eR

e.g. quadratic loss, logistic loss, log-sum-exp, etc

Introduction

How might you do it? For example, consider minimizing
|2-regularized least squares with data matrix A € R"*¢
» Exact:
> lIteration cost: O(nd? + d*)

Introduction

How might you do it? For example, consider minimizing
|2-regularized least squares with data matrix A € R"*¢
» Exact:
> lIteration cost: O(nd? + d*)
» Gradient descent
» lteration cost: O(nd), convergence rate: O(log(1/€)):

Introduction

How might you do it? For example, consider minimizing
|2-regularized least squares with data matrix A € R"*¢
» Exact:
> lIteration cost: O(nd? + d*)
» Gradient descent
» lteration cost: O(nd), convergence rate: O(log(1/€)):
» Stochastic gradient descent
» lteration cost: O(d), convergence rate: O(1/¢):

Introduction

How might you do it? For example, consider minimizing
|2-regularized least squares with data matrix A € R"*¢
» Exact:
> lIteration cost: O(nd? + d*)
» Gradient descent
» lteration cost: O(nd), convergence rate: O(log(1/€)):
» Stochastic gradient descent
» lteration cost: O(d), convergence rate: O(1/¢):
» Newton's method

» lteration cost: O(nd? + d*), convergence rate:
O(log(log(1/¢))):

Introduction

How might you do it? For example, consider minimizing
|2-regularized least squares with data matrix A € R"*¢

» Exact:

> lIteration cost: O(nd? + d*)
Gradient descent

» lteration cost: O(nd), convergence rate: O(log(1/€)):

v

v

Stochastic gradient descent
» lteration cost: O(d), convergence rate: O(1/¢):
Newton's method
» lteration cost: O(nd? + d*), convergence rate:
O(log(log(1/¢))):
Randomized newton’s method

v

v

» lIteration cost: O(nd log(m) + md?), convergence rate:

O(log(1/e))

» with m< n

Introduction

How might you do it? For example, consider minimizing
|2-regularized least squares with data matrix A € R"*¢

» Exact:

> lIteration cost: O(nd? + d*)
Gradient descent

» lteration cost: O(nd), convergence rate: O(log(1/€)):

v

v

Stochastic gradient descent
» lteration cost: O(d), convergence rate: O(1/¢):
Newton's method
» lteration cost: O(nd? + d*), convergence rate:
O(log(log(1/¢))):
Randomized newton’s method

v

v

» lIteration cost: O(nd log(m) + md?), convergence rate:

O(log(1/e))

» with m< n

» Many, many other ways...

Newton's method

v

We start with a derivation of the standard newton method.

v

Assume we're at some iteration x*t

v

We find x**1 by minimizing the second-order taylor expansion
f(x) ~ g(x) around x*:

xt*+1 = argmin g(x)
x€Rd

Where:
> g(x) = F(x*) + VIA(x)T(x = x*) + 3(x = x") TH(x")(x = x*)

v

» H(xt) = V2f(xt)

Newton's method

» What happens if we ignore curvature information and set
H(x) = 17

Newton's method

» What happens if we ignore curvature information and set
H(x) = 17

> g(x) = F(x") + VF(x)T(x = x*) + 55, 11(x = x)II3

Newton's method

» What happens if we ignore curvature information and set
H(x) = 17

> g(x) = F(x") + VF(x)T(x = x*) + 55, 11(x = x)II3

» Take derivative w.r.t x, set to zero:

Newton's method

» What happens if we ignore curvature information and set
H(x) = 17

> g(x) = F(x") + VF(x)T(x = x*) + 55, 11(x = x)II3

» Take derivative w.r.t x, set to zero:

9g(x) __ t t
Ix —O—Vf(x)—i——t(x—x)
—;(x ~ xt) = VF(xt)

Newton's method

» What happens if we ignore curvature information and set
H(x) = 17

> g(x) = F(x) + VA(x) T (x = x*) + 5| (x = x")I[3
» Take derivative w.r.t x, set to zero:

9g(x) __ t t
Ix —O—Vf(x)—i——t(x—x)
—;(x ~ xt) = VF(xt)

» We recover gradient descent

Newton's method

» ... and if we use curvature information?

Newton's method

» ... and if we use curvature information?
> g(x) = F(x) + VI(xH)T(x = x*) + 5(x = x") TH(x")(x — x*)

Newton's method

» ... and if we use curvature information?
> g(x) = F(x*) + VF(x)T(x = x*) + 5(x = x) TH(x")(x — x*)
» Again take derivative w.r.t x, set to zero:

Newton's method

» ... and if we use curvature information?
> g(x) = F(x*) + VF(x)T(x = x*) + 5(x = x) TH(x")(x — x*)
» Again take derivative w.r.t x, set to zero:

8%8() =0 = VFf(x") + H(x)(x — x)
—H(x")(x — x") = VF(x")
Wt ot [H(Xt)]—lvf(xt)

Newton's method

.. and if we use curvature information?
g(x) = F(x*) + VF(x)T (x = x*) + 3(x = x*) TH(x")(x — x*)
Again take derivative w.r.t x, set to zero:

v

v

v

a%(xx) = 0= VF(x") + H(x)(x - x%)

—H(x")(x — x') = Vf(x")
Xt+1 — xt [H(Xt)]_IVf(Xt)

> We get newton's method

Randomized newton’'s method

» Newton's method converges in superlinear time
> But Newton's method requires inverting the hessian, which is
prohibitively expensive for large datasets
» Have to solve linear system Hx = Vf(x") at each iteration
» How does SGD reduce the cost per iteration?
» Replace gradient with random vector d; s.t. E[d;] = Vf(x"):

t+1 _ Xt _ Oétdt

> x
» How does randomized newton reduce the cost per iteration?
» Replace hessian with random matrix D; s.t. E[d;] = H(x*")
> Xt+1 — xt — Dt—lvf(xt)

» Parallelization is trivial modification

Digression: Matrix Sketches

> In order to formalize the randomized newton method, we need
to establish the concept of “matrix sketches”.

» One can sample the rows of a matrix A € R"*9 by forming a
random “sketch” matrix S € R™*"

» Many variations are available
» This work uses S s.t. E[S] =0 and E[STS] =1,
» Using some tricks, SA can be formed in O(nd log m)*

!See section 2.2 in Pilanci and Wainwright

Sketch example: Random row sampling

> Given a probability distribution {p;}]_; over rows
n={1, 2, ..., n}, form S by sampling m rows with
replacements, where each row i = {1, 2, ..., m} takes on the
value:

T — &
] V/Pj

» Sample (scaled) rows of A by matrix product SA

Sketch example: Random row sampling

r 1
0 0 vz 0
ﬁ 0 0 O
-\/%*a{
SA — \/%*a{
1 T
_ﬁ*al

Back to randomized newton

» We will use a sketch matrix S to form a random vector d; s.t
E[d:] = H(x")
» Many ways to do this, we will use the Newton sketch
algorithm of Pilanci and Wainwright?.
» We are in the regime where n > d

» I'll focus on the unconstrained case, but their work extends to
constrained minimization as well.

2Mert Pilanci and Martin J Wainwright. “Newton sketch: A linear-time
optimization algorithm with linear-quadratic convergence”.

In: arXiv preprint
arXiv:1505.02250 (2015).

Randomized newton

Recall our setup:

xt1 = argmin f(x*)+ VF(xt) T (x —x?) + 1 (x —x*) TH(x?)(x — x?)
x€RI

Randomized newton

Recall our setup:

Xt = argmin £(x")+ VF(x") T (x = x") + 3(x —x") TH(x")(x — x")
x€RI

Now supposed we have some hessian square root matrix L € R"*¢
ie. LTL = H(x)
» Ex: Consider f(x) = g(Ax), where g : R” — R has the
separable form g(Ax) = 3" gi(a] x). In this case,
L = diag{g{'(a])}, A
» Pilanci and Wainwright give examples of L for linear program,
GLMs, linear/logistic regression

Randomized newton

Then standard newton becomes:
1
Xt = argmin f(x?) + VF(x)T(x — x*) + §(X — xH)TH(x")(x — xt)
x€Rd

1
X = argmin f(x*) + VF(x") T (x — x*) + §\|L(X —xH||3
x€eRd

Randomized newton

Then standard newton becomes:

X = argmin f(x*) + VF(x") T (x — x*) + %(X — xH)TH(x")(x — xt)
xERI

X = argmin f(x*) + VF(x") T (x — x*) + %HL(X — x93
xERI

To randomized:

1
xt* = argmin f(x?) + VF(x) T (x — x*) + §||5tL(X —xH)|3
x€R

Where S; € R™*" is an independent realization of a sketching
matrix at iteration t.

Randomized newton

Solving for x:
X = xt — D7IVF(xY)
D:=LTSTS.L
We see:
E[D])=E[LTS]S:[] =LTE[S]S]L=L"L = H(x)

Each step of the newton sketch algorithm can be computed in

O(md?) using conjugate gradient instead of O(nd?) of standard
newton.

Convergence

If m is chosen to satisfy certain conditions, the unconstrained
newton sketch algorithm achieves linear convergence:

Fxt) - F(x7) < 1 (L

Bt

Where 8 = Amin(H(x*)), ¥ = Amax(H(x*)) and we assume the
hessian is Lipschitz continuous, i.e. ||[H(x) — H(y)|| < L||x — yl||2.

3See eq’n 12 in Pilanci and Wainwright.

Parallel

Extending the newton sketch algorithm to the parallel setting is
trivial. See for example “Parallel Stochastic Newton Method"# for
convergence results:

Algorithm 1 PSN: Parallel Stochastic Newton Method

Parameters: sampling S; data matrix M; aggregation parameter b
Initialization: Pick z0 € R™

1: for £=0,1,2,... do

2 for i=1,...,cin parallel do
3 Independently generate a random set S'f ~ 8
4 nE e (Mg 'V f(ah)
5: end for '
6 Zhtl gk — %) hF
7. end for

*Mojmir Mutny and Peter Richtarik. “Parallel Stochastic Newton Method” .
In: arXiv preprint arXiv:1705.02005 (2017).

Sequential results®

10° T T T T
. —6— Exact Newton
a, e e GD
@ 0% &N 0 T T T T T T T —— — — Acc. GD 4
0 .- SGD
z BFGS
ey . Newlon Sketch
=l 8
g
4& 10710 4
19
101 . 1 1 1
0 500 1000 1500 2000 2500
iterations
10° T T T T
—@— Exact Newton
=¥ GD
3 40 _ — — Acc.GD]
a0 . SGD
s BFGS
=2 Newton Sketch
g 8
g
i 1070 8
9
1015 . . 1 1 !
L 2 4 6 8 10 12

wall-clock time (seconds)

Logistic regression, d = 100, n = 16384, m = 6d

®Pilanci and Wainwright, “Newton sketch: A linear-time optimization
algorithm with linear-quadratic convergence”.

Parallel results®

10!
— C =1
c=2
mnn c=4
— i ¢=8
= c=16
< 10°
|
'
2
=
“
o
=
w

10° 10! 102 103 104
Iteration [K]

Linear regression, synthetic data, d = n = 103, m = 3, ¢ = number
of processors

®Mutny and Richtarik, “Parallel Stochastic Newton -Method” .

[§ Mutny, Mojmir and Peter Richtarik. “Parallel Stochastic Newton
Method". In: arXiv preprint arXiv:1705.02005 (2017).

[§ Pilanci, Mert and Martin J Wainwright. “Newton sketch: A
linear-time optimization algorithm with linear-quadratic
convergence”. In: arXiv preprint arXiv:1505.02250 (2015).

	Randomized Newton
	Introduction
	Newton's method
	Matrix sketches
	Randomized newton
	Parallel randomized newton
	Results

