
The Randomized Newton Method for Convex
Optimization

Vaden Masrani

UBC MLRG

April 3rd, 2018

Introduction

We have some unconstrained, twice-differentiable convex function
f : Rd → R that we want to minimize:

x∗ = argmin
x∈Rd

f (x)

e.g. quadratic loss, logistic loss, log-sum-exp, etc

Introduction

How might you do it? For example, consider minimizing
l2-regularized least squares with data matrix A ∈ Rn×d

I Exact:
I Iteration cost: O(nd2 + d3)

I Gradient descent
I Iteration cost: O(nd), convergence rate: O(log(1/ε)):

I Stochastic gradient descent
I Iteration cost: O(d), convergence rate: O(1/ε):

I Newton’s method
I Iteration cost: O(nd2 + d3), convergence rate:

O(log(log(1/ε))):

I Randomized newton’s method
I Iteration cost: O(nd log(m) + md2), convergence rate:

O(log(1/ε))
I with m� n

I Many, many other ways...

Introduction

How might you do it? For example, consider minimizing
l2-regularized least squares with data matrix A ∈ Rn×d

I Exact:
I Iteration cost: O(nd2 + d3)

I Gradient descent
I Iteration cost: O(nd), convergence rate: O(log(1/ε)):

I Stochastic gradient descent
I Iteration cost: O(d), convergence rate: O(1/ε):

I Newton’s method
I Iteration cost: O(nd2 + d3), convergence rate:

O(log(log(1/ε))):

I Randomized newton’s method
I Iteration cost: O(nd log(m) + md2), convergence rate:

O(log(1/ε))
I with m� n

I Many, many other ways...

Introduction

How might you do it? For example, consider minimizing
l2-regularized least squares with data matrix A ∈ Rn×d

I Exact:
I Iteration cost: O(nd2 + d3)

I Gradient descent
I Iteration cost: O(nd), convergence rate: O(log(1/ε)):

I Stochastic gradient descent
I Iteration cost: O(d), convergence rate: O(1/ε):

I Newton’s method
I Iteration cost: O(nd2 + d3), convergence rate:

O(log(log(1/ε))):

I Randomized newton’s method
I Iteration cost: O(nd log(m) + md2), convergence rate:

O(log(1/ε))
I with m� n

I Many, many other ways...

Introduction

How might you do it? For example, consider minimizing
l2-regularized least squares with data matrix A ∈ Rn×d

I Exact:
I Iteration cost: O(nd2 + d3)

I Gradient descent
I Iteration cost: O(nd), convergence rate: O(log(1/ε)):

I Stochastic gradient descent
I Iteration cost: O(d), convergence rate: O(1/ε):

I Newton’s method
I Iteration cost: O(nd2 + d3), convergence rate:

O(log(log(1/ε))):

I Randomized newton’s method
I Iteration cost: O(nd log(m) + md2), convergence rate:

O(log(1/ε))
I with m� n

I Many, many other ways...

Introduction

How might you do it? For example, consider minimizing
l2-regularized least squares with data matrix A ∈ Rn×d

I Exact:
I Iteration cost: O(nd2 + d3)

I Gradient descent
I Iteration cost: O(nd), convergence rate: O(log(1/ε)):

I Stochastic gradient descent
I Iteration cost: O(d), convergence rate: O(1/ε):

I Newton’s method
I Iteration cost: O(nd2 + d3), convergence rate:

O(log(log(1/ε))):

I Randomized newton’s method
I Iteration cost: O(nd log(m) + md2), convergence rate:

O(log(1/ε))
I with m� n

I Many, many other ways...

Introduction

How might you do it? For example, consider minimizing
l2-regularized least squares with data matrix A ∈ Rn×d

I Exact:
I Iteration cost: O(nd2 + d3)

I Gradient descent
I Iteration cost: O(nd), convergence rate: O(log(1/ε)):

I Stochastic gradient descent
I Iteration cost: O(d), convergence rate: O(1/ε):

I Newton’s method
I Iteration cost: O(nd2 + d3), convergence rate:

O(log(log(1/ε))):

I Randomized newton’s method
I Iteration cost: O(nd log(m) + md2), convergence rate:

O(log(1/ε))
I with m� n

I Many, many other ways...

Newton’s method

I We start with a derivation of the standard newton method.

I Assume we’re at some iteration x t

I We find xx+1 by minimizing the second-order taylor expansion
f (x) ≈ g(x) around x t :

x t+1 = argmin
x∈Rd

g(x)

I Where:
I g(x) = f (x t) +∇f (x t)T (x − x t) + 1

2 (x − x t)TH(x t)(x − x t)

I H(x t) = ∇2f (x t)

Newton’s method

I What happens if we ignore curvature information and set
H(x) = 1

αt
I?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2αt
||(x − x t)||22

I Take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) +

1

αt
(x − x t)

− 1

αt
(x − x t) = ∇f (x t)

x t+1 = x t − αt∇f (x t)

I We recover gradient descent

Newton’s method

I What happens if we ignore curvature information and set
H(x) = 1

αt
I?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2αt
||(x − x t)||22

I Take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) +

1

αt
(x − x t)

− 1

αt
(x − x t) = ∇f (x t)

x t+1 = x t − αt∇f (x t)

I We recover gradient descent

Newton’s method

I What happens if we ignore curvature information and set
H(x) = 1

αt
I?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2αt
||(x − x t)||22

I Take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) +

1

αt
(x − x t)

− 1

αt
(x − x t) = ∇f (x t)

x t+1 = x t − αt∇f (x t)

I We recover gradient descent

Newton’s method

I What happens if we ignore curvature information and set
H(x) = 1

αt
I?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2αt
||(x − x t)||22

I Take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) +

1

αt
(x − x t)

− 1

αt
(x − x t) = ∇f (x t)

x t+1 = x t − αt∇f (x t)

I We recover gradient descent

Newton’s method

I What happens if we ignore curvature information and set
H(x) = 1

αt
I?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2αt
||(x − x t)||22

I Take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) +

1

αt
(x − x t)

− 1

αt
(x − x t) = ∇f (x t)

x t+1 = x t − αt∇f (x t)

I We recover gradient descent

Newton’s method

I ... and if we use curvature information?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2(x − x t)TH(x t)(x − x t)

I Again take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) + H(x t)(x − x t)

−H(x t)(x − x t) = ∇f (x t)

x t+1 = x t − [H(x t)]−1∇f (x t)

I We get newton’s method

Newton’s method

I ... and if we use curvature information?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2(x − x t)TH(x t)(x − x t)

I Again take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) + H(x t)(x − x t)

−H(x t)(x − x t) = ∇f (x t)

x t+1 = x t − [H(x t)]−1∇f (x t)

I We get newton’s method

Newton’s method

I ... and if we use curvature information?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2(x − x t)TH(x t)(x − x t)

I Again take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) + H(x t)(x − x t)

−H(x t)(x − x t) = ∇f (x t)

x t+1 = x t − [H(x t)]−1∇f (x t)

I We get newton’s method

Newton’s method

I ... and if we use curvature information?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2(x − x t)TH(x t)(x − x t)

I Again take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) + H(x t)(x − x t)

−H(x t)(x − x t) = ∇f (x t)

x t+1 = x t − [H(x t)]−1∇f (x t)

I We get newton’s method

Newton’s method

I ... and if we use curvature information?

I g(x) = f (x t) +∇f (x t)T (x − x t) + 1
2(x − x t)TH(x t)(x − x t)

I Again take derivative w.r.t x , set to zero:

∂g(x)

∂x
= 0 = ∇f (x t) + H(x t)(x − x t)

−H(x t)(x − x t) = ∇f (x t)

x t+1 = x t − [H(x t)]−1∇f (x t)

I We get newton’s method

Randomized newton’s method

I Newton’s method converges in superlinear time
I But Newton’s method requires inverting the hessian, which is

prohibitively expensive for large datasets
I Have to solve linear system Hx = ∇f (x t) at each iteration

I How does SGD reduce the cost per iteration?
I Replace gradient with random vector dt s.t. E [dt] = ∇f (x t):

I x t+1 = x t − αtdt

I How does randomized newton reduce the cost per iteration?
I Replace hessian with random matrix Dt s.t. E [dt] = H(x t)

I x t+1 = x t − D−1
t ∇f (x t)

I Parallelization is trivial modification

Digression: Matrix Sketches

I In order to formalize the randomized newton method, we need
to establish the concept of “matrix sketches”.

I One can sample the rows of a matrix A ∈ Rn×d by forming a
random “sketch” matrix S ∈ Rm×n

I Many variations are available
I This work uses S s.t. E [S] = 0 and E [STS] = In
I Using some tricks, SA can be formed in O(nd logm)1

1See section 2.2 in Pilanci and Wainwright

Sketch example: Random row sampling

I Given a probability distribution {pj}nj=1 over rows
n = {1, 2, ..., n}, form S by sampling m rows with
replacements, where each row i = {1, 2, ..., m} takes on the
value:

sTi =
ej√
pj

I Sample (scaled) rows of A by matrix product SA

Sketch example: Random row sampling

S =

 0 0 1√
p3

0

0 0 1√
p3

0
1√
p1

0 0 0

 A =

−aT1 −
−aT2 −
−aT3 −
−aT4 −

SA =

1√
p3
∗ aT3

1√
p3
∗ aT3

1√
p1
∗ aT1

Back to randomized newton

I We will use a sketch matrix S to form a random vector dt s.t
E [dt] = H(x t)

I Many ways to do this, we will use the Newton sketch
algorithm of Pilanci and Wainwright2.

I We are in the regime where n > d
I I’ll focus on the unconstrained case, but their work extends to

constrained minimization as well.

2Mert Pilanci and Martin J Wainwright. “Newton sketch: A linear-time
optimization algorithm with linear-quadratic convergence”. In: arXiv preprint
arXiv:1505.02250 (2015).

Randomized newton

Recall our setup:

x t+1 = argmin
x∈Rd

f (x t) +∇f (x t)T (x−x t) + 1
2(x−x t)TH(x t)(x−x t)

Now supposed we have some hessian square root matrix L ∈ Rn×d

ie. LTL = H(x)

I Ex: Consider f (x) = g(Ax), where g : Rn → R has the
separable form g(Ax) =

∑n
i gi (a

T
i x). In this case,

L = diag{g ′′i (aTi x)}ni=1A

I Pilanci and Wainwright give examples of L for linear program,
GLMs, linear/logistic regression

Randomized newton

Recall our setup:

x t+1 = argmin
x∈Rd

f (x t) +∇f (x t)T (x−x t) + 1
2(x−x t)TH(x t)(x−x t)

Now supposed we have some hessian square root matrix L ∈ Rn×d

ie. LTL = H(x)

I Ex: Consider f (x) = g(Ax), where g : Rn → R has the
separable form g(Ax) =

∑n
i gi (a

T
i x). In this case,

L = diag{g ′′i (aTi x)}ni=1A

I Pilanci and Wainwright give examples of L for linear program,
GLMs, linear/logistic regression

Randomized newton

Then standard newton becomes:

x t+1 = argmin
x∈Rd

f (x t) +∇f (x t)T (x − x t) +
1

2
(x − x t)TH(x t)(x − x t)

x t+1 = argmin
x∈Rd

f (x t) +∇f (x t)T (x − x t) +
1

2
||L(x − x t)||22

To randomized:

x t+1 = argmin
x∈Rd

f (x t) +∇f (x t)T (x − x t) +
1

2
||StL(x − x t)||22

Where St ∈ Rm×n is an independent realization of a sketching
matrix at iteration t.

Randomized newton

Then standard newton becomes:

x t+1 = argmin
x∈Rd

f (x t) +∇f (x t)T (x − x t) +
1

2
(x − x t)TH(x t)(x − x t)

x t+1 = argmin
x∈Rd

f (x t) +∇f (x t)T (x − x t) +
1

2
||L(x − x t)||22

To randomized:

x t+1 = argmin
x∈Rd

f (x t) +∇f (x t)T (x − x t) +
1

2
||StL(x − x t)||22

Where St ∈ Rm×n is an independent realization of a sketching
matrix at iteration t.

Randomized newton

Solving for x :

x t+1 = x t − D−1t ∇f (x t)

Dt = LTST
t StL

We see:

E [Dt] = E [LTST
t StL] = LTE [ST

t St]L = LTL = H(x)

Each step of the newton sketch algorithm can be computed in
O(md2) using conjugate gradient instead of O(nd2) of standard
newton.

Convergence

If m is chosen to satisfy certain conditions3, the unconstrained
newton sketch algorithm achieves linear convergence:

f (x t)− f (x∗) ≤ βγ

8L
(

1

2
+ ε

β

γ
)t

Where β = λmin(H(x∗)), γ = λmax(H(x∗)) and we assume the
hessian is Lipschitz continuous, i.e. ||H(x)− H(y)|| ≤ L||x − y ||2.

3See eq’n 12 in Pilanci and Wainwright.

Parallel

Extending the newton sketch algorithm to the parallel setting is
trivial. See for example “Parallel Stochastic Newton Method”4 for
convergence results:

4Mojḿır Mutnỳ and Peter Richtárik. “Parallel Stochastic Newton Method”.
In: arXiv preprint arXiv:1705.02005 (2017).

Sequential results5

Logistic regression, d = 100, n = 16384,m = 6d

5Pilanci and Wainwright, “Newton sketch: A linear-time optimization
algorithm with linear-quadratic convergence”.

Parallel results6

Linear regression, synthetic data, d = n = 103,m = 3, c = number
of processors

6Mutnỳ and Richtárik, “Parallel Stochastic Newton Method”.

Mutnỳ, Mojḿır and Peter Richtárik. “Parallel Stochastic Newton
Method”. In: arXiv preprint arXiv:1705.02005 (2017).

Pilanci, Mert and Martin J Wainwright. “Newton sketch: A
linear-time optimization algorithm with linear-quadratic
convergence”. In: arXiv preprint arXiv:1505.02250 (2015).

	Randomized Newton
	Introduction
	Newton's method
	Matrix sketches
	Randomized newton
	Parallel randomized newton
	Results

